Data Augmentation in NLP

2020-03-21

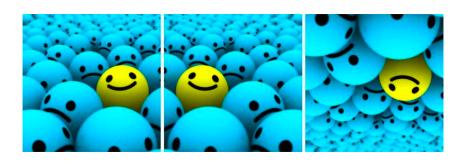
Outline

- Why we need Data Augmentation?
- Data Augmentation in CV
- Widely Used Methods
 - EDA
 - Back-Translation
 - Contextual Augmentation
- Methods based on Pre-trained Language Models.
 - BERT
 - GPT
 - Seq2Seq (BART)
- Conclusion

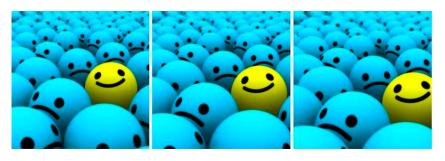
Why we need Data Augmentation?

- Few-shot Learning
- Imbalance labeled data
- Semi-supervise Learning
-

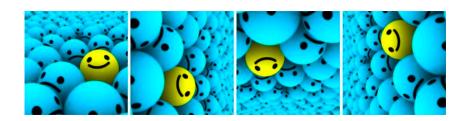
Data Augmentation in CV



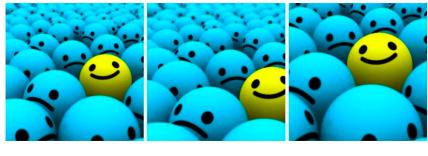
Flip: flip images horizontally and vertically.



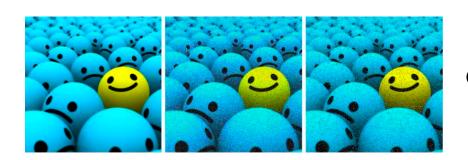
Scale



Rotation



Crop : randomly sample a section from the original image



Gaussian Noise

https://medium.com/nanonets/how-to-use-deep-learning-when-you-have-limited-data-part-2-data-augmentation-c26971dc8ced

IF we apply them to NLP

I hate you!

! you hate I

Flip: flip horizontally and vertically.

I hate you!

Crop: randomly sample a section

Language is Discrete.

Widely Used Methods

- EDA
- Back-Translation
- Contextual Augmentation

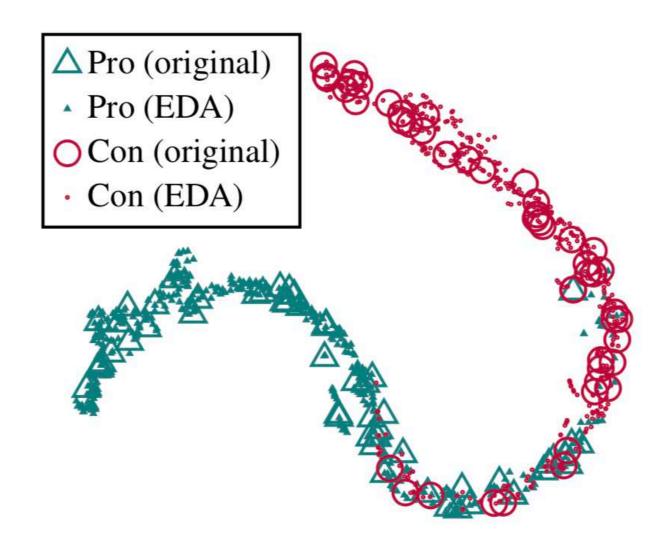
EDA

- EDA: Easy Data Augmentation Techniques for Boosting Performance on Text Classification Tasks
- 1. Synonym Replacement (SR): Randomly choose n words from the sentence that are not stop words. Replace each of these words with one of its synonyms chosen at random.
- 2. Random Insertion (RI): Find a random synonym of a random word in the sentence that is not a stop word. Insert that synonym into a random position in the sentence. Do this n times.
- **3.** Random Swap (RS): Randomly choose two words in the sentence and swap their positions. Do this n times.
- **4. Random Deletion (RD):** Randomly remove each word in the sentence with probability p.

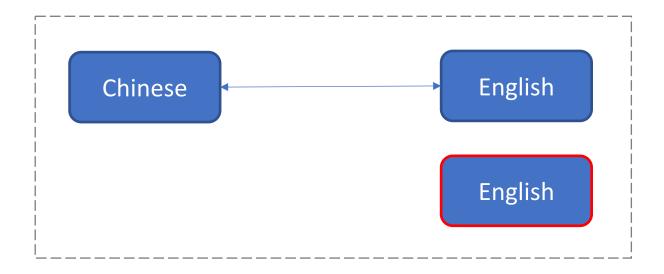
EDA Examples

Operation	Sentence					
None	A sad, superior human comedy played out					
	on the back roads of life.					
SR	A lamentable, superior human comedy					
	played out on the <i>backward</i> road of life.					
RI	A sad, superior human comedy played out					
	on <i>funniness</i> the back roads of life.					
RS	A sad, superior human comedy played out					
	on <i>roads</i> back <i>the</i> of life.					
RD	A sad, superior human out on the roads of					
	life.					

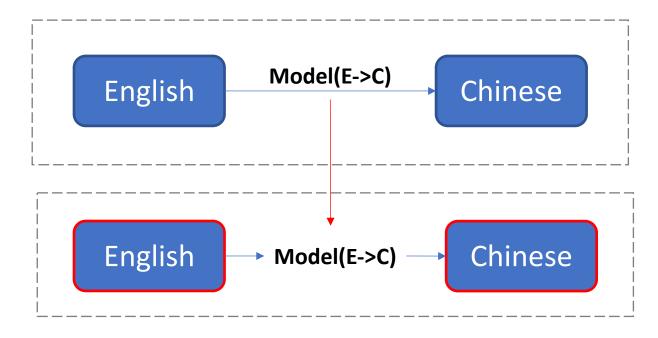
Conserving True Labels?

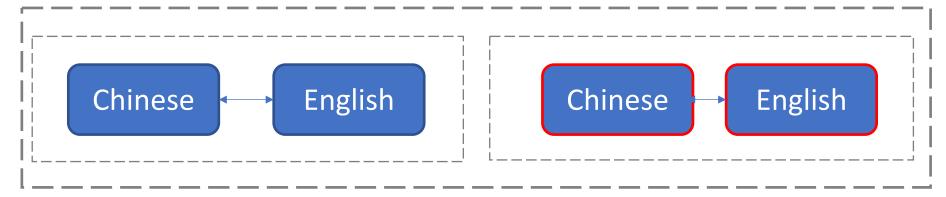


Back-Translation



Back-Translation





 Contextual Augmentation: Data Augmentation by Words with Paradigmatic Relations NAACL18

- Disadvantages of the Synonym Replacement
 - Snonyms are very limited.
 - Synonym-based augmentation cannot produce numerous different patterns from the original texts.

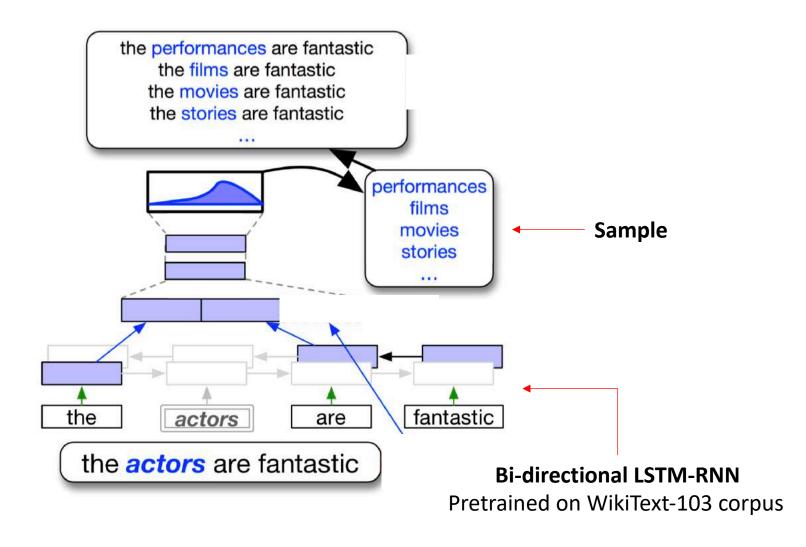
the *performer* are fantastic the *actress* are fantastic

the *performances* are fantastic the *films* are fantastic the *movies* are fantastic the *stories* are fantastic

Synonym Replacement

Contextual Augmentation

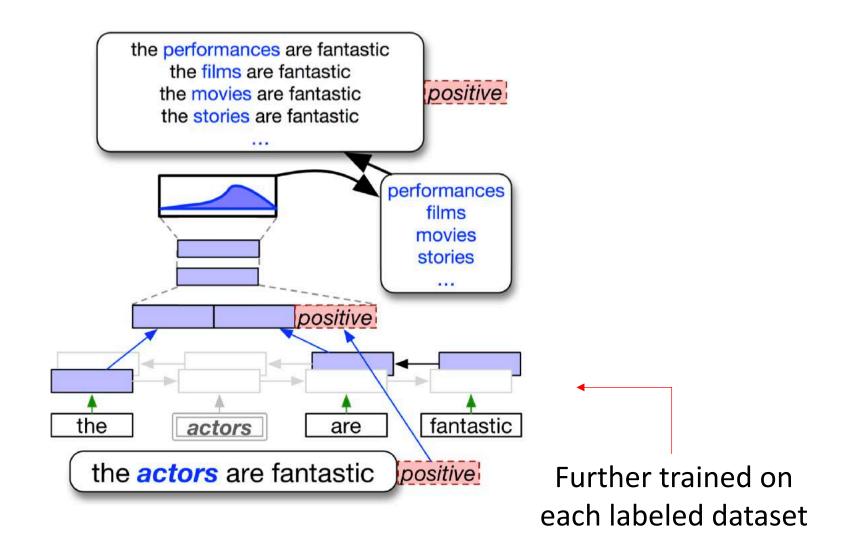
the *actors* are fantastic



the actors are *good*the actors are *entertaining*the actors are *bad*the actors are *terrible*

positive positive

the actors are *fantastic* positive



Others

- Variational Auto Encoding (VAE)
- Paraphrasing
- Round-trip Translation
- Generative Adversarial Networks (GAN)

Methods based on Pre-trained Language Models

- Conditional BERT Contextual Augmentation ICCS19
- Do Not Have Enough Data? Deep Learning to the Rescue! AAAI20
- Data Augmentation using Pre-trained Transformer
 Models Arxiv20

Methods based on Pre-trained Language Models

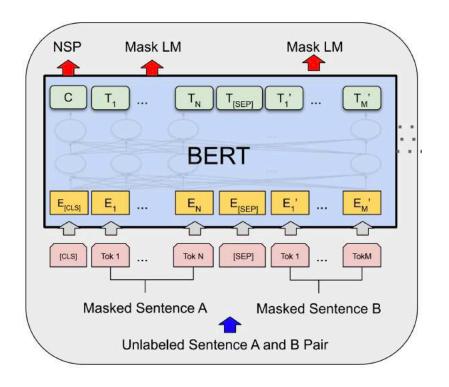
(4) Knowledge Transfer Beyond Fine-tuning Currently, fine-tuning is the dominant method to transfer PTMs' knowledge to downstream tasks, but one deficiency is its parameter inefficiency: every downstream task has its own fine-tuned parameters. An improved solution is to fix the original parameters of PTMs and by adding small fine-tunable adaption modules for specific task [149, 61]. Thus, we can use a shared PTM to serve multiple downstream tasks. Indeed, mining knowledge from PTMs can be more flexible, such as feature extraction, knowledge distillation [195], data augmentation [185, 84], using PTMs as external knowledge [125], and so on. More efficient methods are expected.

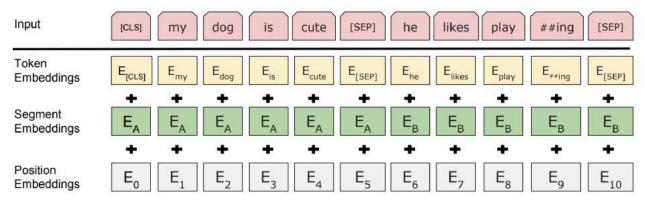
Conditional BERT Contextual Augmentation

ICCS19

Xing Wu, Shangwen Lv, Liangjun Zang, Jizhong Han, Songlin Hu, Institute of Information Engineering, Chinese Academy of Sciences, Beijing, China University of Chinese Academy of Sciences, Beijing, China

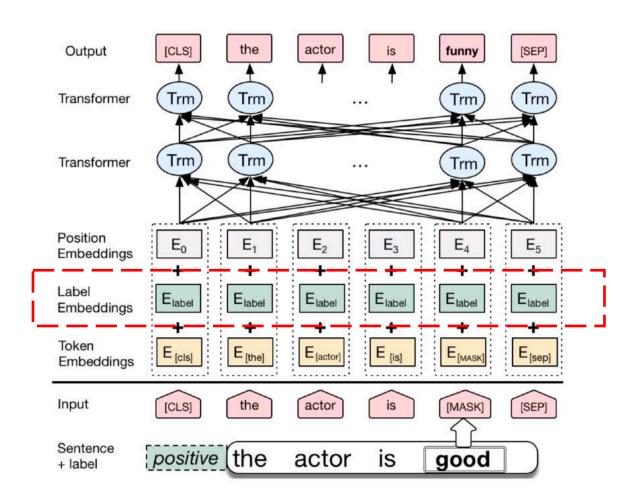
BERT





BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding

C-BERT



Do Not Have Enough Data? Deep Learning to the Rescue!

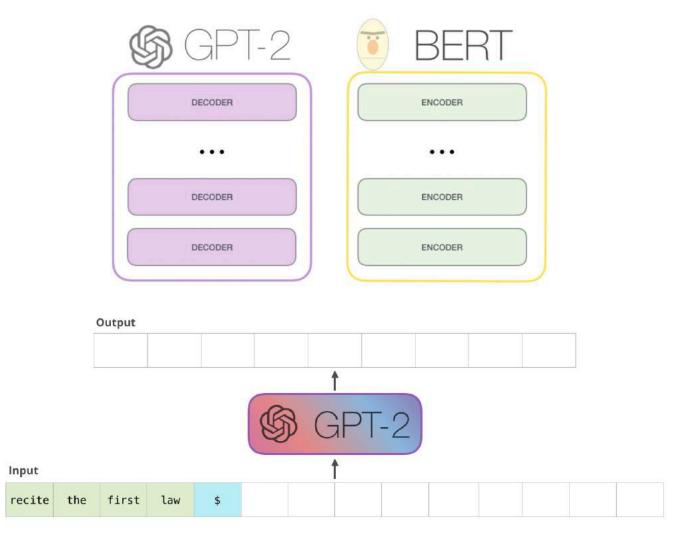
AAAI20

Ateret Anaby-Tavor, Boaz Carmeli, Esther Goldbraich, Amir Kantor, George Kour,
Segev Shlomov, Naama Tepper, Naama Zwerdling
IBM Research AI,
University of Haifa, Israel,
Technion - Israel Institute of Technology

 language-model-based data augmentation (LAMBADA)

- Disadvantages of the Contextual Augmentation
 - Presumably, methods that make only <u>local</u> <u>changes</u> will produce sentences with a structure similar to the original ones, thus yielding <u>low</u> <u>corpus-level variability</u>

GPT

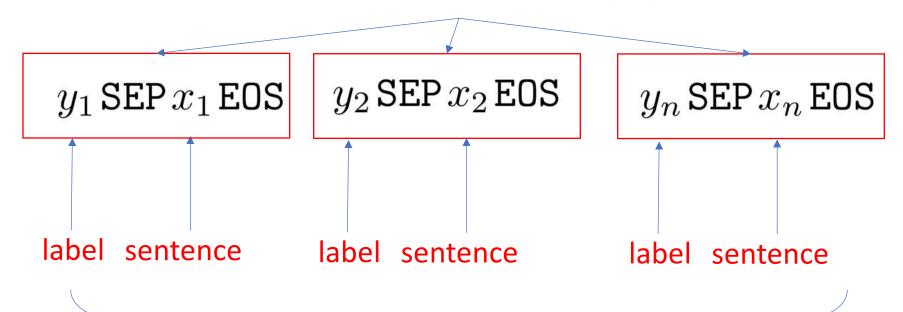


• The generative pre-training (GPT) model

Class label	Sentences
Flight time	what time is the last flight from san francisco to washington dc on continental
Aircraft	show me all the types of aircraft used flying from atl to dallas
City	show me the cities served by canadian airlines

$$J_{\theta} = -\sum_{j} \log P_{\theta}(w^{j}|w^{j-k},\dots,w^{j-1})$$

$$D_{train} = \{(x_i, y_i)\}_{i=1}^n$$



 $y_1 \operatorname{SEP} x_1 \operatorname{EOS} y_2 \operatorname{SEP} x_2 \operatorname{EOS} y_3 \cdots y_n \operatorname{SEP} x_n \operatorname{EOS} y_n$

Filter synthesized data

$$\mathcal{G}_{tuned} \longrightarrow D^*$$

$$D_{train} \longrightarrow \text{classifier } h$$

$$(x,y) \in D^*$$
—classifier h

$$h(x) \neq y$$

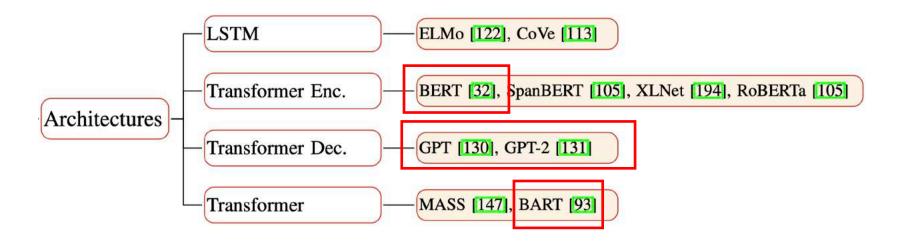
$$h(x) = y$$
 Confidence Score

Data Augmentation using Pretrained Transformer Models

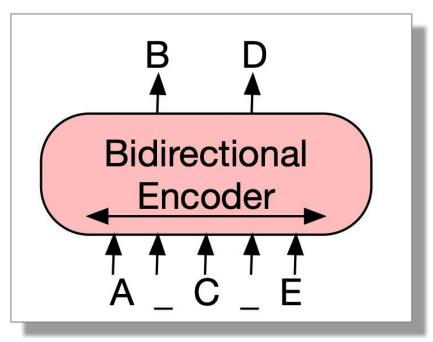
Arxiv20

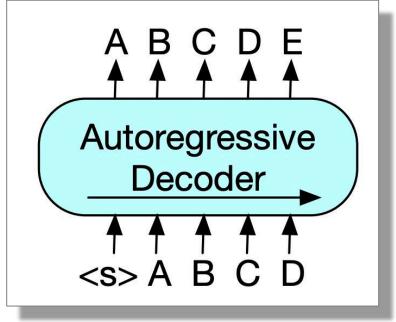
Varun Kumar, Alexa Al Ashutosh Choudhary, Alexa Al Eunah Cho, Alexa Al

Pre-trained Language Models



Pre-trained Language Models

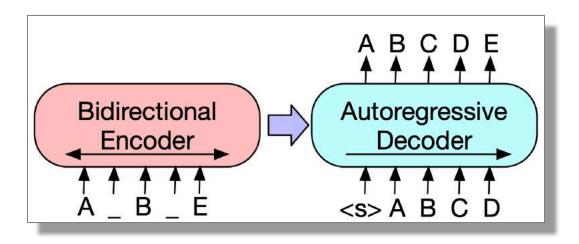


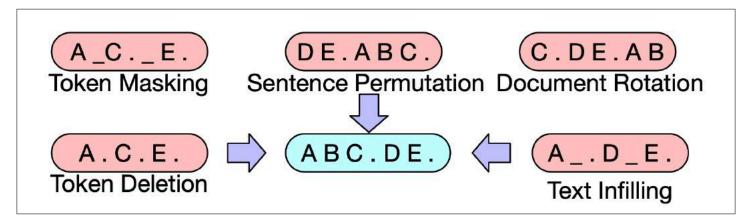


BERT GPT-2

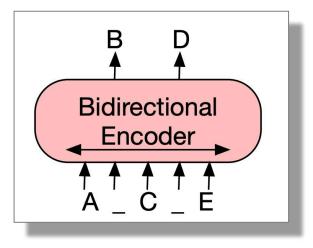
Pre-trained Language Models

 BART: Denoising Sequence-to-Sequence Pre-training for Natural Language Generation, Translation, and Comprehension

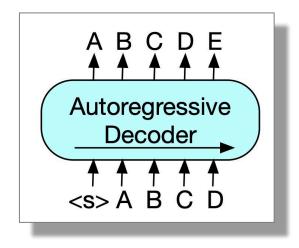




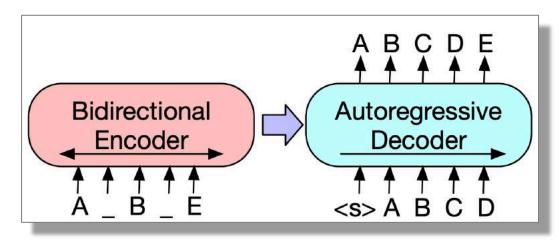
Unified Approach



autoencoder (AE) LM: BERT



auto-regressive (AR) : GPT2



seq2seq model: BART

Add Labels: Expend

expand: prepending label y_i to each sequence x_i in the training data and adding y_i to model vocabulary.

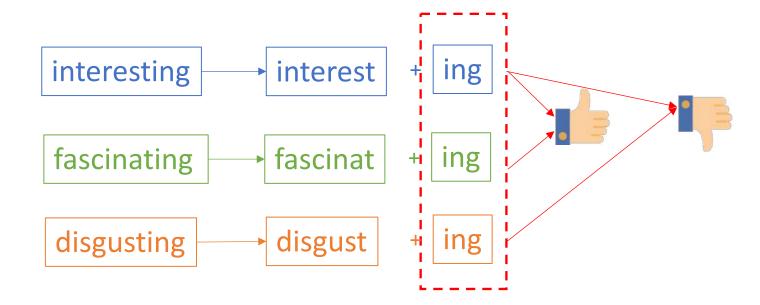
treats a label as a single token

interesting

Add Labels: Prepend

prepend: prepending label y_i to each sequence x_i in the training data without adding y_i to model vocabulary

the model may split label into multiple subword units



Fine-tuning

Туре	PLM	Task	Labels	Model	Description
AE	DEDT	MLM	prepend	BERT prepend	
AL	BERT	IVILIVI	expand	BERT expand	

Fine-tuning

Туре	PLM	Task	Labels	Model	Description	
AE	BERT	NALNA	prepend	BERT prepend		
AL	DEKI	MLM	expand	BERT expand		
	GPT2	$ \begin{array}{c c} & LM \\ (y_1SEPx_1EOS) \end{array} $		GPT2	$y_i SEP$	
AR			prepend	GPT2 context	$y_i SEPw_1w_2w_3$	

Fine-tuning

Туре	PLM	Task	Labels	Model	Description
AE	A.E. DEDT NAISA		prepend	BERT prepend	
AE	BERT	MLM	expand	BERT expand	
	GPT2	T2 $ LM $ $(y_1SEPx_1EOS) $		GPT2	y _i SEP
AR			prepend	GPT2 context	$y_i SEPw_1w_2w_3$
	BART			BART word	Replace a token with mask
Seq2Seq		Denoising	prepend	BART span	Replace a continuous chunk words

Algorithm

Algorithm 1: Data Augmentation approach

Input: Training Dataset D_{train}

Pretrained model $G \in \{AE, AR, Seq2Seq\}$

- 1 Fine-tune G using D_{train} to obtain G_{tuned}
- 2 $D_{synthetic} \leftarrow \{\}$
- 3 foreach $\{x_i,y_i\}\in D_{train}$ do
- Synthesize s examples $\{\hat{x_i}, \hat{y_i}\}_{p}^1$ using

- G_{tuned} $D_{synthetic} \leftarrow D_{synthetic} \cup \{\hat{x_i}, \hat{y_i}\}_p^1$
- 6 end

Experiments

- Baseline
 - EDA
 - C-BERT

- Task
 - Sentiment Classification (SST2)
 - Intent Classification (SNIPS)
 - Question Classification (TREC)

Data	Label Names
SST-2	Positive, Negative
TREC	Description, Entity, Abbreviation, Human, Location, Numeric
SNIPS	PlayMusic, GetWeather, RateBook, SearchScreeningEvent, SearchCreativeWork, AddTo-
3	Playlist, BookRestaurant

	SST	-2	SNIF	PS	TREC		
	All 1%		All 1%		All 1%		
Train	6,229	61	13,084	127	5,406	51	
Dev	693	10	700	35	546 30		
Test	1,821		700		500		

five validation examples per class

Experiments

Extrinsic Evaluation

- Sentiment Classification
- Intent Classification
- Question Classification

Intrinsic Evaluation

- Semantic Fidelity
- Text Diversity

Extrinsic Evaluation

• Pre-trained BERT classifier

100	Model	SST2 (1%)	SNIPS (1%)	TREC (1%)
ar	No Aug	59.08	57.95	30.65
	EDA	59.09	77.46	29.57
	CBERT	59.85	80.55	29.96
	BERT _{expand}	61.24	79.75	31.88
 	BERT _{prepend}	61.90	81.31	30.28
	GPT2	58.62	68.25	26.24
	GPT2 _{context}	59.39	77.73	31.54
	$BART_{word}$	62.35	79.98	37.48
	BART _{span}	63.00	81.68	37.25

Semantic Fidelity

Training + Test dataset → BERT classifier

Model	SST2	SNIPS	TREC
CBERT	96.94	97.32	95.29
BERT _{expand}	96.17	96.80	92.68
BERT _{prepend}	97.38	97.32	96.08
GPT2	58.80	42.89	24.44
GPT2 _{context}	69.84	85.04	73.33
$BART_{word}$	88.99	94.86	87.06
BART _{span}	89.39	94.87	86.80

Text Diversity

Model	SST2			SNIPS			TREC		
<i>n</i> -gram	1	2	3	1	2	3	1	2	3
CBERT	0.466	0.906	0.980	0.411	0.794	0.923	0.488	0.870	0.961
BERT _{expand}	0.490	0.914	0.983	0.432	0.809	0.934	0.511	0.881	0.965
BERT _{prepend}	0.465	0.907	0.981	0.415	0.798	0.932	0.487	0.873	0.956
GPT2	0.519	0.929	0.985	0.383	0.803	0.914	0.514	0.802	0.896
GPT2 _{context}	0.524	0.933	0.994	0.354	0.781	0.938	0.571	0.872	0.954
$BART_{word}$	0.537	0.941	0.995	0.415	0.813	0.948	0.529	0.849	0.971
BART _{span}	0.527	0.936	0.995	0.408	0.798	0.934	0.502	0.882	0.965

Conclusion

- Data augmentation is useful.
- EDA, Back-translation,.....
- PLM can be used for data augmentation.
- Generate new data is powerful than the replacebased method.
- Data Augmentation for Text Generation?

Thanks!